Curva de Calentamiento para Agua

En A empezar a calentar un vaso de hielo a $-20^{\circ} \mathrm{C}$. La temperatura es \qquad _.
En B el hielo comienza a \qquad . La temperatura es \qquad _.

En C
el hielo se ha \qquad por completo. La temperatura es \qquad -.

En D
el agua comienza a \qquad . La temperatura es \qquad .

En E
el agua se ha \qquad por completo. La temperatura es \qquad .

- El punto de congelación del agua es \qquad . El punto de ebullición del agua es \qquad .

A a B La temperatura es \qquad C a D La energía cinética es \qquad
Encima de E La energía potencial es \qquad B a C La temperatura es \qquad
D a E La energía cinética es \qquad La energía potencial es \qquad

Las Problemas de la Energía:

1. Calcule la energía (cal) necesaria para derretir $125,0 \mathrm{~g}$ de hielo a $0,0^{\circ} \mathrm{C}$. ¿Esto es endotérmico o exotérmico?
2. ¿Cuánta energía (kJ) se necesita para calentar 180.0 g de hielo a $-20.0^{\circ} \mathrm{C}$ para regar a $75.0^{\circ} \mathrm{C}$? ¿Endotérmico o exotérmico?
3. Si $275,0 \mathrm{~g}$ de agua líquida a $100,0^{\circ} \mathrm{C}$ y $475,0 \mathrm{~g}$ a $30,0^{\circ} \mathrm{C}$ de agua se mezclan en un recipiente aislado, ¿cuál es la temperatura final?
